
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Convex Relaxation of Combined Heat and Power Dispatch

Combined heat and power dispatch promotes interactions and synergies between electric power systems and district heating systems. However, nonlinear and nonconvex heating flow imposes significant challenges on finding qualified solutions efficiently. Most existing methods rely on constant flow assumptions to derive a linear heating flow model, sacrificing optimality for computational simplicity. This paper proposes a novel convex combined heat and power dispatch model based on model simplification and constraint relaxation, which improves solution quality and avoids assumptions on operating regimes of district heating systems. To alleviate mathematical complexity introduced by the commonly used node method, a simplified thermal dynamic model is proposed to capture temperature changes in networked pipelines. Conic and polyhedral relaxations are then applied to convexify the original problems with bilinear and quadratic equality constraints. Furthermore, an adaptive solution algorithm is proposed to successively reduce relaxation gaps based on dynamic bivariate partitioning, improving solution optimality with desirable computational efficiency. The proposed method is verified on a 33-bus electric power system integrated with a 30-node district heating system and compared to nonlinear programming solvers and constant-flow-based solutions.
- Massachusetts Institute of Technology United States
- Zhejiang Ocean University China (People's Republic of)
- University of Macau Macao
- Illinois Institute of Technology United States
- Zhejiang Ocean University China (People's Republic of)
Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Optimization and Control
Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
