
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Robust Aggregator Design for Industrial Thermal Energy Storages in Smart Grid

Exploitation of flexible consumption in the future smart grid requires new actors and infrastructure. In this paper, we propose a hierarchical setup in which a central controller, a so-called “aggregator,” is responsible for managing the flexibilities of industrial thermal loads via a contract-based direct control policy. The aggregator manipulates the consumption profile in an optimal and robust manner in order to provide upward and downward regulating power services. To this end, we consider a robust model predictive control design at the aggregator. The performance of the proposed controller is evaluated by simulating specific case studies involving a supermarket refrigeration system and a heating, ventilation, and air conditioning chiller in conjunction with an ice storage. In addition, we provide a comparison between heterogeneous and homogeneous aggregation of different thermal loads through simulation examples.
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Pacific Northwest National Laboratory United States
- Aalborg University Library (AUB) Denmark
- Pacific Northwest National Laboratory United States
- Aalborg University Library (AUB) Denmark
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
