Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Guest Editorial The Theory of Complex Systems With Applications to Smart Grid Operations

Authors: Soummya Kar; Ian Dobson; Le Xie; Ali Tajer; Javad Lavaei;

Guest Editorial The Theory of Complex Systems With Applications to Smart Grid Operations

Abstract

The papers in this special section focus on complex systems within current smart grid operations. The existing power grids, being recognized as one of the significant engineering accomplishments, work exceptionally well for the purposes they have been designed to achieve. Enabled by the advances in sensing, communication, computation, and actuation, smart power are rapidly growing in scale, inter-connectivity, and complexity. Major paradigm shifts in power grids include departing producer-controlled structures and transforming to more decentralized and consumer-interactive ones, being more distributed in electricity generation, enhancing the coupling between the physical and cyber layers, and operating in more variable and stochastic conditions. Driven by these emerging needs, power grids are anticipated to be complex and smart networked platforms in which large volume of high-dimensional and complex data is routinely generated, exchanged, and processed for various monitoring, control, and scheduling purposes. The papers in this section cover some of the recent research in the theory of complex systems with applications to power grid operations, which present novel research contributions in all aspects of complex and large-scale systems of relevance and significance in power grids.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average