Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geo-Routing Algorithms and Protocols for Power Line Communications in Smart Grids

Authors: Mauro Biagi; Simone Greco; Lutz Lampe;

Geo-Routing Algorithms and Protocols for Power Line Communications in Smart Grids

Abstract

Making electric power grids smart is invariably linked to the implementation of an advanced communication infrastructure that is able to transport sensing, control and automation information timely, reliably and efficiently. Reusing the power line themselves to realize (part of) this infrastructure is an obvious choice that has a long and successful track record with power utilities. In this paper, we propose to make use of the fact that the nodes of a power line communications (PLCs) network are stationary to deliver messages fast and energy efficiently through routes consisting of a series of communication links. In particular, we exploit location information of PLC nodes to route a message along a favorable path. Such geographic or geo-routing is particularly apt for PLC networks with time-varying link qualities, where optimal routes will change with time. We present routing algorithms and protocols for unicast, broadcast, and multicast transmission that use network topology knowledge to determine the message path taking energy and delay constraints into account. We focus on the distribution domain of the power grid and propose decentralized solutions that use of information about the communication neighborhood of a node, which is acquired through proper signaling in the grid.

Country
Italy
Keywords

Geographic routing; power line communications (PLC); protocols; smart grid; computer science (all)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%