Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2018
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2018
Data sources: IRIS Cnr
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Low Cost Coupling System for Power Line Communication on Medium Voltage Smart Grids

Authors: Giovanni Artale; Antonio Cataliotti; Valentina Cosentino; Dario Di Cara; Riccardo Fiorelli; Salvatore Guaiana; Giovanni Tine;

A New Low Cost Coupling System for Power Line Communication on Medium Voltage Smart Grids

Abstract

This paper proposes and verifies the performance of an innovative and low cost coupling system for power line communication (PLC) on medium voltage (MV) smart grids. The coupling system makes use of the capacitive divider of the voltage detecting systems (VDSs) to inject and receive the PLC signal. VDS are usually already installed in the MV switchboards of the major electrical manufacturer all over the world according to IEC 61243-5. VDS are used to detect the presence of the mains voltage to guarantee personnel safety. An interface circuit has been developed to be connected between the PLC transceiver and the VDS socket. In this way, the PLC signal can be coupled to the MV network without installing a dedicated MV coupler, thus avoiding the related costs of the coupler, the installation, and the temporary service interruption. The innovative device is able to couple digitally modulated narrowband PLC signals with modulation rate up to 19.2 kbit/s. In this paper, first a description of the proposed solution is reported. Second, its communication performance has been tested in laboratory. Finally, different tests have been carried out in two MV smart grid real installations under normal operation, i.e., in the presence of the mains voltage. ? 2010-2012 IEEE.

Country
Italy
Keywords

communication systems; couplers; narrow band power line communication; Power system communication; power system communication; power system measurements; smart grids, communication signal couplers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 1%