Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Consensus-Based Distributed Algorithm for Economic Dispatch Based on Local Estimation of Power Mismatch

Authors: Hajir Pourbabak; Jingwei Luo; Tao Chen; Wencong Su;

A Novel Consensus-Based Distributed Algorithm for Economic Dispatch Based on Local Estimation of Power Mismatch

Abstract

This paper proposes a novel consensus-based distributed control algorithm for solving the economic dispatch problem of distributed generators. A legacy central controller can be eliminated in order to avoid a single point of failure, relieve computational burden, maintain data privacy, and support plug-and-play functionalities. The optimal economic dispatch is achieved by allowing the iterative coordination of local agents (consumers and distributed generators). As coordination information, the local estimation of power mismatch is shared among distributed generators through communication networks and does not contain any private information, ultimately contributing to a fair electricity market. Additionally, the proposed distributed algorithm is particularly designed for easy implementation and configuration of a large number of agents in which the distributed decision making can be implemented in a simple proportional-integral (PI) or integral (I) controller. In MATLAB/Simulink simulation, the accuracy of the proposed distributed algorithm is demonstrated in a 29-node system in comparison with the centralized algorithm. Scalability and a fast convergence rate are also demonstrated in a 1400-node case study. Further, the experimental test demonstrates the practical performance of the proposed distributed algorithm using the VOLTTRON platform and a cluster of low-cost credit-card-size single-board PCs.

Comment: 16 Pages, 13 figures Figures order and references are corrected!

Related Organizations
Keywords

Mathematics - Optimization and Control

Powered by OpenAIRE graph
Found an issue? Give us feedback