Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralized Solution for Combined Heat and Power Dispatch Through Benders Decomposition

Authors: Chenhui Lin; Wenchuan Wu; Boming Zhang; Yong Sun;

Decentralized Solution for Combined Heat and Power Dispatch Through Benders Decomposition

Abstract

The operational flexibility of electric power systems (EPS) is restricted by combined heat and power (CHP) units that act to maintain sufficient heating supply. By exploiting the pipeline heat storage property in central heating systems (CHS), combined heat and power dispatch (CHPD) can significantly increase the operational flexibility and reduce wind power curtailment. In this paper, pipeline heat storage is modeled in the CHPD model under the constant mass flow heating dispatch mode, and the CHPD model can be formulized as a quadratic programming problem. Since the EPS and CHS are independently operated by the EPS and CHS operators, a decentralized solution to the CHPD model is proposed. During each iteration of the decentralized procedure, an optimal cut or a feasible cut is generated by the CHS operator and sent to the EPS operator. A robust model considering the wind power uncertainty is also studied with the proposed decentralized solution. This decentralized solution has a high efficiency and a light communication burden. Numerical tests on practical systems demonstrate the feasibility of the proposed decentralized method and the economic benefits brought by reducing wind curtailment.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    181
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
181
Top 1%
Top 1%
Top 1%