
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Game-Theoretic Approaches for Energy Cooperation in Energy Harvesting Small Cell Networks
Deploying small cells in cellular networks, as a technique for capacity and coverage enhancement, is an indispensable characteristic of future cellular networks. In this paper, two novel online approaches for enabling energy trading in multitier cellular networks with noncooperative energy-harvesting base stations (BSs) are proposed. The goal is to minimize the nonrenewable energy consumption in a multitier cellular network with an arbitrary number of tiers. In the first approach, a decentralized energy trading framework is established in which BSs are stimulated to compensate their energy shortage with the extra harvested energy from other BSs rather than using the nonrenewable energy. Matching theory is used to assign BSs with energy deficit to the BSs with extra harvested energy. In the second approach, which is centralized, BSs with extra harvested energy and BSs with energy deficit enter a double auction for energy trading. The centralized approach also motivates the BSs with deficient energy to use other BSs extra harvested energy and satisfies a number of properties including truthfulness, individual rationalities, and budget balance. Both approaches achieve Nash equilibrium and motivate noncooperative BSs to share their extra harvested energy. The extra harvested energy is exchanged by the smart grid. We show that the amount of information exchanged in the network to enable BSs to trade energy is reduced in the centralized algorithm compared to the decentralized algorithm at the expense of using a control center. Simulation results verify that the proposed approaches reduce the nonrenewable energy consumption conspicuously. Furthermore, by applying the proposed approaches, BSs gain more profit, and consequently, their utility functions enhance.
- University of Minnesota United States
- University of Tehran Iran (Islamic Republic of)
- University of Queensland Australia
- University of Minnesota Morris United States
- University of Queensland Australia
energy harvesting, multitier cellular network, nonrenewable energy, 2208 Electrical and Electronic Engineering, 006, Double auction, energy trading, 2604 Applied Mathematics, 2202 Aerospace Engineering, noncooperative base stations (BSS), 2203 Automotive Engineering, matching theory
energy harvesting, multitier cellular network, nonrenewable energy, 2208 Electrical and Electronic Engineering, 006, Double auction, energy trading, 2604 Applied Mathematics, 2202 Aerospace Engineering, noncooperative base stations (BSS), 2203 Automotive Engineering, matching theory
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
