Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ENEA Open Archivearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ENEA Open Archive
Conference object . 2015
Data sources: ENEA Open Archive
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/wcica....
Conference object . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exergy-efficient management of energy districts

Authors: DI SOMMA, MARIALAURA; Yan, Bing; Luh, Peter B.; Bragin, Mikhail A.; BIANCO, NICOLA; Graditi, Giorgio; Mongibello, Luigi; +1 Authors

Exergy-efficient management of energy districts

Abstract

Sustainable development requires not only the use of sustainable energy resources, but also the efficient use of all energy resources. The latter should be reached by considering the concept of energy as well as exergy - the true magnitude of thermodynamic losses. Exergy describes the quality of an energy flow as the percentage that can be completely transformed into any other form of energy. Reduction of exergy losses represents a more efficient use of energy resources, which is essential in the long run, but it is not captured by standard energy costs, which are crucial in the short run. In this paper, exergy analysis is used in the context of a multi-carrier energy district to match the supply and demand not only in quantity but also in quality. The innovative contribution of this paper is the offering of a trade-off between reducing exergy losses and energy costs, thereby attaining sustainability of the energy district. A mixed-integer programming problem considering several energy devices is formulated to minimize a weighted sum of exergy losses and energy costs while satisfying time-varying user demands. The problem is solved by branch-and-cut. Numerical results demonstrate that the optimized operation of the energy devices makes the energy district sustainable in terms of exergy efficiency and costs.

Country
Italy
Keywords

Mixed-integer linear programming problem, Mixed-integer linear programming problem;Energy quality;Energy district;Exergy-efficient management, Computer Science Applications1707 Computer Vision and Pattern Recognition, Energy district; Energy quality; Exergy-efficient management; Mixed-integer linear programming problem; Control and Systems Engineering; Software; Computer Science Applications1707 Computer Vision and Pattern Recognition, Energy district, Control and Systems Engineering, Exergy-efficient management, Software, Energy quality

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average