Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mémoires en Sciences...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Functional Ecology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2021
Data sources: HAL INRAE
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators

Authors: Denis Nonclercq; Thomas Lecocq; Elise Hennebert; Baptiste Martinet; Baptiste Martinet; Denis Michez; Pierre Rasmont; +3 Authors

Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators

Abstract

Abstract Climate change is related to an increase in frequency and intensity of extreme events such as heatwaves. It is well established that such events may worsen the current world‐wide biodiversity decline. In many organisms, heat stress is associated with direct physiological perturbations and could lead to a decrease of fitness. In contrast to endotherms, heat stress resistance has been poorly investigated in heterotherms; especially in insects, in which the internal physiological mechanisms available to regulate body temperature are almost negligible making them sensitive to extreme temperature variations. Wild bees are crucial pollinators for wild plants and crops. Among them, bumblebees are experiencing a strong decline across the world. Therefore, the ongoing global decline of these insect pollinators partly due to climate change could cause major economic issues. Here we assess how simulated heatwaves impact fertility and attractiveness (key parameters of sustainability) of bumblebee males. We used three model species: Bombus terrestris, a widespread and warm‐adapted species, B. magnus and B. jonellus, two declining and cold‐adapted species. We highlight that heat shock (40°C) negatively affects sperm viability and sperm DNA integrity only in the two cold‐adapted species. Heat shock can also impact the structure of cephalic labial glands and the production of pheromones only in the declining species. The specific disruption in key reproductive traits we identify following simulated heatwave conditions could provide one important mechanistic explanation for why some pollinators are in decline through climate change. A free Plain Language Summary can be found within the Supporting Information of this article.

Country
France
Keywords

[SDV.EE]Life Sciences [q-bio]/Ecology, environment, fertility, 570, attractiveness, heterotherms, [SDV.EE] Life Sciences [q-bio]/Ecology, environment, climate change, [SDV.EE]Life Sciences [q-bio]/Ecology, pollinators, environment, simulated heatwaves

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%