Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Ecology
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Ecology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brage IMR
Article . 2015
Data sources: Brage IMR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Munin - Open Research Archive
Article . 2015 . Peer-reviewed
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biological introduction risks from shipping in a warming Arctic

Authors: Anders Jelmert; Sławomir Kwaśniewski; Loïc Pellissier; Chris Ware; Chris Ware; Georgy A. Semenov; Mary S. Wisz; +5 Authors

Biological introduction risks from shipping in a warming Arctic

Abstract

Summary Several decades of research on invasive marine species have yielded a broad understanding of the nature of species invasion mechanisms and associated threats globally. However, this is not true of the Arctic, a region where ongoing climatic changes may promote species invasion. Here, we evaluated risks associated with non‐indigenous propagule loads discharged with ships' ballast water to the high‐Arctic archipelago, Svalbard, as a case study for the wider Arctic. We sampled and identified transferred propagules using traditional and DNA barcoding techniques. We then assessed the suitability of the Svalbard coast for non‐indigenous species under contemporary and future climate scenarios using ecophysiological models based on critical temperature and salinity reproductive thresholds. Ships discharging ballast water in Svalbard carried high densities of zooplankton (mean 1522 ± 335 SE individuals m−3), predominately comprised of indigenous species. Ballast water exchange did not prevent non‐indigenous species introduction. Non‐indigenous coastal species were present in all except one of 16 ballast water samples (mean 144 ± 67 SE individuals m−3), despite five of the eight ships exchanging ballast water en route. Of a total of 73 taxa, 36 species including 23 non‐indigenous species were identified. Of those 23, sufficient data permitted evaluation of the current and future colonization potential for eight widely known invaders. With the exception of one of these species, modelled suitability indicated that the coast of Svalbard is unsuitable presently; under the 2100 Representative Concentration Pathway (RCP) 8·5 climate scenario, however, modelled suitability will favour colonization for six species. Synthesis and applications. We show that current ballast water management practices do not prevent non‐indigenous species from being transferred to the Arctic. Consequences of these shortcomings will be shipping‐route dependent, but will likely magnify over time: our models indicate future conditions will favour the colonization of non‐indigenous species Arctic‐wide. Invasion threats will be greatest where shipping transfers organisms across biogeographic realms, and for these shipping routes ballast water treatment technologies may be required to prevent impacts. Our results also highlight critical gaps in our understanding of ballast water management efficacy and prioritization. Thereby, our study provides an agenda for research and policy development.

Countries
Denmark, Norway, Norway
Keywords

ballast water exchange, zooplankton, habitat suitability, regeneration niche, invasion, Arctic, climate change, ecophysiological thresholds, shipping, marine non-indigenous species

2 Data sources, page 1 of 1
  • more_vert
  • more_vert
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Green
hybrid