
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An alternate vegetation type proves resilient and persists for decades following forest conversion in the North American boreal biome

Abstract Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and biotic interactions shape the long‐term fate of a deciduous broadleaf forest type that replaces black spruce after severe wildfires in interior Alaska, USA. We simulated postfire deciduous forest that replaced black spruce after severe fires in 2004 for tens to hundreds of years under different climate scenarios (contemporary, mid 21st century, late 21st century), fire return intervals (11–250 years), distances to seed source (50–1,000 m) and browsing intensities (background, moderate, chronic). We identified combinations of conditions where deciduous forest remained the dominant vegetation type and combinations where it returned to black spruce forest, transitioned to mixed forest (where deciduous species and black spruce co‐dominate) or converted to nonforest. Deciduous forest persisted in 86% of simulations and was most resilient if fire return intervals were short (≤50 years). When transitions to another vegetation type occurred, mixed forest was most common, particularly when fire return intervals were long (>50 years) and the nearest seed source was 500 m or farther. Moderate and chronic browsing also reduced deciduous sapling growth and survival, helping black spruce compete if fire return intervals were long and seed source was distant. Dry soils occasionally caused conversion to nonforest following short‐interval fire when simulations were forced with a late 21st‐century climate scenario that projects warming and increased vapor pressure deficit. Return to black spruce forest almost never occurred. Synthesis. Conversion from black spruce to deciduous forest is already underway at regional scales in interior Alaska, and similar transitions have been widely observed throughout the North American boreal biome. We show that this boreal deciduous forest type is likely a resilient alternate state that will persist through the 21st century, which is important, because future vegetation outcomes will shape biophysical feedbacks to regional climate and influence subsequent disturbance regimes.
- Alaska Department of Fish and Game United States
- King’s University United States
- University of California System United States
- University of Wisconsin–Oshkosh United States
- University of Wisconsin–Oshkosh United States
Agricultural and Veterinary Sciences, Ecology, based simulation models, Biological Sciences, alternate states, wildfire, climate change, global change ecology, process‐, boreal forest, abrupt change, forest resilience, Environmental Sciences
Agricultural and Veterinary Sciences, Ecology, based simulation models, Biological Sciences, alternate states, wildfire, climate change, global change ecology, process‐, boreal forest, abrupt change, forest resilience, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
