Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Ecology
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Ecology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An alternate vegetation type proves resilient and persists for decades following forest conversion in the North American boreal biome

Authors: Ryan Fitzsimmons; A. Park Williams; Justin Olnes; Winslow D. Hansen; Winslow D. Hansen;

An alternate vegetation type proves resilient and persists for decades following forest conversion in the North American boreal biome

Abstract

Abstract Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and biotic interactions shape the long‐term fate of a deciduous broadleaf forest type that replaces black spruce after severe wildfires in interior Alaska, USA. We simulated postfire deciduous forest that replaced black spruce after severe fires in 2004 for tens to hundreds of years under different climate scenarios (contemporary, mid 21st century, late 21st century), fire return intervals (11–250 years), distances to seed source (50–1,000 m) and browsing intensities (background, moderate, chronic). We identified combinations of conditions where deciduous forest remained the dominant vegetation type and combinations where it returned to black spruce forest, transitioned to mixed forest (where deciduous species and black spruce co‐dominate) or converted to nonforest. Deciduous forest persisted in 86% of simulations and was most resilient if fire return intervals were short (≤50 years). When transitions to another vegetation type occurred, mixed forest was most common, particularly when fire return intervals were long (>50 years) and the nearest seed source was 500 m or farther. Moderate and chronic browsing also reduced deciduous sapling growth and survival, helping black spruce compete if fire return intervals were long and seed source was distant. Dry soils occasionally caused conversion to nonforest following short‐interval fire when simulations were forced with a late 21st‐century climate scenario that projects warming and increased vapor pressure deficit. Return to black spruce forest almost never occurred. Synthesis. Conversion from black spruce to deciduous forest is already underway at regional scales in interior Alaska, and similar transitions have been widely observed throughout the North American boreal biome. We show that this boreal deciduous forest type is likely a resilient alternate state that will persist through the 21st century, which is important, because future vegetation outcomes will shape biophysical feedbacks to regional climate and influence subsequent disturbance regimes.

Country
United States
Keywords

Agricultural and Veterinary Sciences, Ecology, based simulation models, Biological Sciences, alternate states, wildfire, climate change, global change ecology, process&#8208, boreal forest, abrupt change, forest resilience, Environmental Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Green
hybrid