Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Ecology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Journal of Ecology
Article
License: Wiley Online Library User Agreement
Data sources: Sygma
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Ecology
Article . 2022 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid thermophilization of understorey plant communities in a 9 year‐long temperate forest experiment

Authors: Govaert, Sanne; Vangansbeke, Pieter; Blondeel, Haben; Steppe, Kathy; Verheyen, Kris; De Frenne, Pieter;

Rapid thermophilization of understorey plant communities in a 9 year‐long temperate forest experiment

Abstract

Abstract The vast majority of plant biodiversity associated with temperate forests is harboured by the understorey layer. This layer also plays crucial roles in ecosystem functions such as tree regeneration, nutrient cycling and carbon dynamics. Research using space‐for‐time substitutions and resurveys of vegetation plots has shown that climate warming, changes in forest management and resource availability are key determinants of forest understorey biodiversity change and functioning. However, long‐term experiments are needed to better unravel their complex interactive effects. Here we study the influence of nearly a decade of experimental warming, light addition using fluorescent tubes (as a proxy for management‐driven changes in forest‐floor light levels) and nitrogen input on understorey plant communities of temperate broadleaved forest. Plant communities shifted towards a higher dominance of warm‐adapted species, a process referred to as thermophilization. We detected a marked community shift in all treatments including the control plots, reflecting ongoing ambient environmental changes. This reordering over time was greater than the shift induced by the treatments. Thermophilization was, however, greatest when temperature and/or light availability were enhanced. Communities were also taller in response to warming and increased light availability. Synthesis. Our experiment provides important insights into 9 years of vegetation changes in a temperate forest and how canopy density and forest management can be adapted to limit thermophilization of forest understorey biodiversity under climate change. [Correction added on 27 April 2021, after first online publication: The Synthesis section in the abstract has been updated to reflect the original text supplied.]

Country
Belgium
Related Organizations
Keywords

long&#8208, forest management, Biology and Life Sciences, drought, nitrogen deposition, term experiment, climate change, shade, functional traits, herbaceous layer

Powered by OpenAIRE graph
Found an issue? Give us feedback