Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Ecology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Ecology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2021
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tree growth in Switzerland is increasingly constrained by rising evaporative demand

Authors: Marcus Schaub; David I. Forrester; Nina Buchmann; Charlotte Grossiord; Charlotte Grossiord; Arthur Gessler; Arthur Gessler; +5 Authors

Tree growth in Switzerland is increasingly constrained by rising evaporative demand

Abstract

Abstract The response of trees to intra‐annual environmental constraints varies temporally throughout a growing season and spatially across landscapes. A better understanding of these dynamics will help us anticipate the impacts of short‐term climate variability and medium‐term climate change on forests. Using the process‐based 3‐PG forest ecosystem model, we assessed the spatial manifestation and seasonal variation in environmental constraints [vapour pressure deficit (VPD), air temperature and soil water availability] on tree growth for the potential distribution range of seven widespread Central European tree species. We focused our analyses on Switzerland, where large climatic gradients occur within a comparatively small geographic area. On average, over the last 60 years, simulated forest growth during the May–August growing season was limited by high VPD (67% of the forested area), low air temperature (29%) or low soil water availability (4%). But this response varied among species and across elevations. When comparing the period 1961–1990 with 1991–2018, we observed major shifts from former temperature limitation to recent VPD limitation across 12% of the area (3%–25%, depending on species), mainly at mid‐elevations (700–1,200 m a.s.l.). At the same time, forest growth at lower elevations (i.e. below 700 m a.s.l.) became more limited by available soil water at the end of the growing season. Synthesis. Our results highlight how the relative impact of environmental growth constraints has shifted in the last three decades, and show that the importance of VPD as a dominant environmental growth constraint has increased for tree species in Swiss and Central European forests. Understanding the spatial and temporal variability in environmental growth constraints will help to generate accurate species‐specific risk maps for forest managers to identify areas with elevated drought and heat stress in the near future.

Countries
Switzerland, Switzerland
Keywords

VPD, drought, 3-PG; climate change; drought; growth limitation; tree-rings; VPD, climate change, 3-PG, tree-rings, growth limitation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%