Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Ec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Ecology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interactive effects of preindustrial, current and future atmospheric CO2concentrations and temperature on soil fungi associated with twoEucalyptusspecies

Authors: Anderson, Ian C. (R10589); Drigo, Barbara (R14289); Keniry, Kerry L. (S26310); Ghannoum, Oula (R10359); Chambers, Susan M. (R9355); Tissue, David T. (R11531); Cairney, John W. G. (R10573);

Interactive effects of preindustrial, current and future atmospheric CO2concentrations and temperature on soil fungi associated with twoEucalyptusspecies

Abstract

Soil microbial processes have a central role in global fluxes of the key biogenic greenhouse gases and are likely to respond rapidly to climate change. Whether climate change effects on microbial processes lead to a positive or negative feedback for terrestrial ecosystem resilience is unclear. In this study, we investigated the interactive effects of [CO(2)] and temperature on soil fungi associated with faster-growing Eucalyptus saligna and slower-growing Eucalyptus sideroxylon, and fungi that colonised hyphal in-growth bags. Plants were grown in native soil under controlled soil moisture conditions, while subjecting the above-ground compartment to defined atmospheric conditions differing in CO(2) concentrations (290, 400, 650 μL L(-1)) and temperature (26 and 30 °C). Terminal restriction fragment length polymorphism and sequencing methods were used to examine effects on the structure of the soil fungal communities. There was no significant effect of host plant or [CO(2)]/temperature treatment on fungal species richness (α diversity); however, there was a significant effect on soil fungal community composition (β diversity) which was strongly influenced by eucalypt species. Interestingly, β diversity of soil fungi associated with both eucalypt species was significantly influenced by the elevated [CO(2) ]/high temperature treatment, suggesting that the combination of future predicted levels of atmospheric [CO(2)] and projected increases in global temperature will significantly alter soil fungal community composition in eucalypt forest ecosystems, independent of eucalypt species composition. These changes may arise through direct effects of changes in [CO(2)] and temperature on soil fungi or through indirect effects, which is likely the case in this study given the plant-dependent nature of our observations. This study highlights the role of plant species in moderating below-ground responses to future predicted changes to [CO(2)] and temperature and the importance of considering integrated plant-soil system responses.

Country
Australia
Keywords

ectomycorrhizal fungi, Climate Change, Microbiology, nitrogen, climatic changes, Soil, XXXXXX - Unknown, soil fungi, Ecosystem, Soil Microbiology, soil fungal communities, elevated CO2, Eucalyptus, photosynthesis, Atmosphere, Fungi, Temperature, carbon dioxide, Eucalyptus saligna, preindustrial CO2, Carbon Dioxide, mycorrhizal fungi, climate change, Eucalyptus sideroxylon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold