Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Ecology Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Ecology Resources
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions

Authors: Lacoursière-Roussel, Anaïs; orcid Rosabal, Maikel;
Rosabal, Maikel
ORCID
Harvested from ORCID Public Data File

Rosabal, Maikel in OpenAIRE
orcid Bernatchez, Louis;
Bernatchez, Louis
ORCID
Harvested from ORCID Public Data File

Bernatchez, Louis in OpenAIRE

Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions

Abstract

AbstractEnvironmental DNA (eDNA) promises to ease noninvasive quantification of fish biomass or abundance, but its integration within conservation and fisheries management is currently limited by a lack of understanding of the influence of eDNA collection method and environmental conditions on eDNA concentrations in water samples. Water temperature is known to influence the metabolism of fish and consequently could strongly affect eDNA release rate. As water temperature varies in temperate regions (both seasonally and geographically), the unknown effect of water temperature on eDNA concentrations poses practical limitations on quantifying fish populations using eDNA from water samples. This study aimed to clarify how water temperature and the eDNA capture method alter the relationships between eDNA concentration and fish abundance/biomass. Water samples (1 L) were collected from 30 aquaria including triplicate of 0, 5, 10, 15 and 20 Brook Charr specimens at two different temperatures (7 °C and 14 °C). Water samples were filtered with five different types of filters. The eDNA concentration obtained by quantitative PCR (qPCR) varied significantly with fish abundance and biomass and types of filters (mixed‐design ANOVA, P < 0.001). Results also show that fish released more eDNA in warm water than in cold water and that eDNA concentration better reflects fish abundance/biomass at high temperature. From a technical standpoint, higher levels of eDNA were captured with glass fibre (GF) filters than with mixed cellulose ester (MCE) filters and support the importance of adequate filters to quantify fish abundance based on the eDNA method. This study supports the importance of including water temperature in fish abundance/biomass prediction models based on eDNA.

Country
Canada
Keywords

fish, Population Density, Trout, salmonid, Temperature, Environmental Exposure, Real-Time Polymerase Chain Reaction, qPCR, conservation genetics, species detection, water sampling, Animals, Biomass, Metagenomics

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
225
Top 1%
Top 10%
Top 1%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?