
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Letter: Trophic interactions regulate peatland carbon cycling
doi: 10.1111/ele.13697
pmid: 33554469
AbstractPeatlands are the most efficient natural ecosystems for long‐term storage of atmospheric carbon. Our understanding of peatland carbon cycling is based entirely on bottom‐up controls regulated by low nutrient availability. Recent studies have shown that top‐down controls through predator‐prey dynamics can influence ecosystem function, yet this has not been evaluated in peatlands to date. Here, we used a combination of nutrient enrichment and trophic‐level manipulation to test the hypothesis that interactions between nutrient availability (bottom‐up) and predation (top‐down) influence peatland carbon fluxes. Elevated nutrients stimulated bacterial biomass and organic matter decomposition. In the absence of top‐down regulation, carbon dioxide (CO2) respiration driven by greater decomposition was offset by elevated algal productivity. Herbivores accelerated CO2 emissions by removing algal biomass, while predators indirectly reduced CO2 emissions by muting herbivory in a trophic cascade. This study demonstrates that trophic interactions can mitigate CO2 emissions associated with elevated nutrient levels in northern peatlands.
- University of Guelph Canada
- Ball State University United States
- Institute of Arctic and Alpine Research United States
- University of Colorado Boulder United States
- Institute of Arctic and Alpine Research United States
Food Chain, Carbon Dioxide, Carbon Cycle, Predatory Behavior, Animals, Biomass, Ecosystem
Food Chain, Carbon Dioxide, Carbon Cycle, Predatory Behavior, Animals, Biomass, Ecosystem
