
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Challenges, developments and perspectives in intermittent river ecology

doi: 10.1111/fwb.12789
handle: 10072/99979
Summary Although more than half the world's river networks comprise channels that periodically cease to flow and dry [intermittent rivers (IRs)], river ecology was largely developed from and for perennial systems. Ecological knowledge of IRs is rapidly increasing, so there is a need to synthesise this knowledge and deepen ecological understanding. In this Special Issue, we bring together 13 papers spanning observational case studies, field and laboratory experiments and reviews to guide research and management in this productive field of freshwater science. We summarise new developments in IR ecology, identify research gaps and needs, and address how the study of IRs as highly dynamic ecosystems informs ecological understanding more broadly. This series of articles reveals that contemporary IR ecology is a multifaceted and maturing field of research at the interface between aquatic and terrestrial ecology. This research contributes to fresh water and general ecology by testing concepts across a range of topics, including disturbance ecology, metacommunity ecology and coupled aquatic‐terrestrial ecosystems. Drying affects flow continuity through time and flow connectivity across longitudinal, lateral and vertical dimensions of space, which aligns well with the recent emphasis of mainstream ecology on meta‐system perspectives. Although most articles here focus on the wet phase, there is growing interest in dry phases, and in the terrestrial vegetation and invertebrate assemblages living in and along IR channels. We encourage interdisciplinary studies on IRs to further blur the demarcation between aquatic and terrestrial ecosystems and develop more integrated perspectives. As a result of climate change and human modification of landscapes and waterways, flooding and drought are expected to become more extreme and widespread. Shifts in streamflow regimes from perennial to intermittent may exacerbate the duration and frequency of dry phases in IRs with serious implications for river ecosystems and the quality and diversity of services they provide.
- National Research Institute for Agriculture, Food and Environment France
- Queensland University of Technology Australia
- Department of Climate, Energy and the Environment Ireland
- Griffith University Australia
- Griffith University Australia
[SDE] Environmental Sciences, 577, temporary, Marine and estuarine ecology (incl. marine ichthyology), rivers, Environmental sciences, Biological sciences, climate change, intermittent, flow cessation, [SDE]Environmental Sciences, drying, genealogy, ephemeral
[SDE] Environmental Sciences, 577, temporary, Marine and estuarine ecology (incl. marine ichthyology), rivers, Environmental sciences, Biological sciences, climate change, intermittent, flow cessation, [SDE]Environmental Sciences, drying, genealogy, ephemeral
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
