Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Newcastle University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geobiology
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
Geobiology
Article . 2024
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogeological controls on microbial activity and habitability in the Precambrian continental crust

Authors: Min Song; Oliver Warr; Jon Telling; Barbara Sherwood Lollar;

Hydrogeological controls on microbial activity and habitability in the Precambrian continental crust

Abstract

AbstractEarth's deep continental subsurface is a prime setting to study the limits of life's relationship with environmental conditions and habitability. In Precambrian crystalline rocks worldwide, deep ancient groundwaters in fracture networks are typically oligotrophic, highly saline, and locally inhabited by low‐biomass communities in which chemolithotrophic microorganisms may dominate. Periodic opening of new fractures can lead to penetration of surface water and/or migration of fracture fluids, both of which may trigger changes in subsurface microbial composition and activity. These hydrogeological processes and their impacts on subsurface communities may play a significant role in global cycles of key elements in the crust. However, to date, considerable uncertainty remains on how subsurface microbial communities may respond to these changes in hydrogeochemical conditions. To address this uncertainty, the biogeochemistry of Thompson mine (Manitoba, Canada) was investigated. Compositional and isotopic analyses of fracture waters collected here at ~1 km below land surface revealed different extents of mixing between subsurface brine and (paleo)meteoric waters. To investigate the effects this mixing may have had on microbial communities, the Most Probable Number technique was applied to test community response for a total of 13 different metabolisms. The results showed that all fracture waters were dominated by viable heterotrophic microorganisms which can utilize organic materials associated with aerobic/facultative anaerobic processes, sulfate reduction, or fermentation. Where mixing between subsurface brines and (paleo)meteoric waters occurs, the communities demonstrate higher cell densities and increased viable functional potentials, compared to the most saline sample. This study therefore highlights the connection between hydrogeologic heterogeneity and the heterogeneity of subsurface ecosystems in the crystalline rocks, and suggests that hydrogeology can have a considerable impact on the scope and scale of subsurface microbial communities on Earth and potentially beyond.

Country
United Kingdom
Related Organizations
Keywords

Earth, Planet, Microbiota, Biomass, Meteoroids, Groundwater

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research