Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate change reduces offspring fitness in littoral spawners: a study integrating organismic response and long‐term time‐series

Authors: Bartolini, Fabrizio; Barausse, Alberto; Pörtner, Hans‐Otto; Giomi, Folco;

Climate change reduces offspring fitness in littoral spawners: a study integrating organismic response and long‐term time‐series

Abstract

AbstractIntegrating long‐term ecological observations with experimental findings on species response and tolerance to environmental stress supports an understanding of climate effects on population dynamics. Here, we combine the two approaches, laboratory experiments and analysis of multi‐decadal time‐series, to understand the consequences of climate anomalies and ongoing change for the population dynamics of a eurythermal littoral species,Carcinus aestuarii. For the generation of cause and effect hypotheses we investigated the thermal response of crab embryos at four developmental stages. We first measured metabolic rate variations in embryos following acute warming (16–24 °C) and after incubation at 20 and 24 °C for limited periods. All experiments consistently revealed differential thermal responses depending on the developmental stage. Temperature‐induced changes in metabolic activity of early embryonic stages of blastula and gastrula suggested the onset of abnormal development. In contrast, later developmental stages, characterized by tissue and organ differentiation, were marginally affected by temperature anomalies, indicating enhanced resilience to thermal stress. Then, we extended these findings to a larger, population scale, by analyzing a time‐series ofC. aestuariilandings in the Venice lagoon from 1945 to 2010 (ripe crabs were recorded separately) in relation to temperature. Landings and extreme climatic events showed marked long‐term and short‐term variations. We found negative relationships between landings and thermal stress indices on both timescales, with time lags consistent with an impact on crab early life stages. When quantitatively evaluating the influence of thermal stress on population dynamics, we found that it has a comparable effect to that of the biomass of spawners. This work provides strong evidence that physiological responses to climatic anomalies translate into population‐level changes and that apparently tolerant species may be impacted before the ontogeny of eurythermy. These ontogenetic bottlenecks markedly shape population dynamics and require study to assess the effects of global change.

Country
Italy
Keywords

570, Lagoon of Venice, Population dynamics, Ontogeny of eurythermy, Climate Change, Population Dynamics, Thermal stress, Carcinus aestuarii, Heat waves, Thermal response of embryos, Settore BIOS-05/A - Ecologia, Crustacea, Climate change, Animals, Fishery landings, Long-term ecological time-series, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Green