Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2013
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2013
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high‐amplitude cycles

Authors: Korpela, K.; Delgado, M.; Henttonen, Heikki; Korpimäki, E.; Koskela, E.; Ovaskainen, O.; Pietiäinen, H.; +3 Authors

Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high‐amplitude cycles

Abstract

AbstractSmall rodents are key species in many ecosystems. In boreal and subarctic environments, their importance is heightened by pronounced multiannual population cycles. Alarmingly, the previously regular rodent cycles appear to be collapsing simultaneously in many areas. Climate change, particularly decreasing snow quality or quantity in winter, is hypothesized as a causal factor, but the evidence is contradictory. Reliable analysis of population dynamics and the influence of climate thereon necessitate spatially and temporally extensive data. We combined data on vole abundances and climate, collected at 33 locations throughout Finland from 1970 to 2011, to test the hypothesis that warming winters are causing a disappearance of multiannual vole cycles. We predicted that vole population dynamics exhibit geographic and temporal variation associated with variation in climate; reduced cyclicity should be observed when and where winter weather has become milder. We found that the temporal patterns in cyclicity varied between climatically different regions: a transient reduction in cycle amplitude in the coldest region, low‐amplitude cycles or irregular dynamics in the climatically intermediate regions, and strengthening cyclicity in the warmest region. Our results did not support the hypothesis that mild winters are uniformly leading to irregular dynamics in boreal vole populations. Long and cold winters were neither a prerequisite for high‐amplitude multiannual cycles, nor were mild winters with reduced snow cover associated with reduced winter growth rates. Population dynamics correlated more strongly with growing season than with winter conditions. Cyclicity was weakened by increasing growing season temperatures in the cold, but strengthened in the warm regions. High‐amplitude multiannual vole cycles emerge in two climatic regimes: a winter‐driven cycle in cold, and a summer‐driven cycle in warm climates. Finally, we show that geographic climatic gradients alone may not reliably predict biological responses to climate change.

Country
Finland
Keywords

330, Arvicolinae, Climate Change, Population Dynamics, Cold Temperature, ilmastonmuutos, myyräsyklit, ta1181, Animals, Seasons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 1%