Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A cross‐biome synthesis of soil respiration and its determinants under simulated precipitation changes

Authors: Liu, Lingli; Wang, Xin; Lajeunesse, Marc J.; Miao, Guofang; Piao, Shilong; Wan, Shiqiang; Wu, Yuxin; +4 Authors

A cross‐biome synthesis of soil respiration and its determinants under simulated precipitation changes

Abstract

AbstractSoil respiration (Rs) is the second‐largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta‐analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by −1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of −14% and −17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by −12% and −6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation‐induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.

Country
United States
Related Organizations
Keywords

570, 550, soil temperature, Climate Change, Rain, drought, 910, precipitation regime, Soil, aridity index, wet, Biology, Soil Microbiology, Ecology, Integrative Biology, Temperature, Water, Biological Sciences, apparent Q(10), Droughts, Climate Action, meta-analysis, apparent Q10, Environmental sciences, Biological sciences, Earth sciences, soil moisture, Environmental Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    235
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
235
Top 1%
Top 10%
Top 1%
Green
bronze