
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Vegetation growth enhancement in urban environments of the Conterminous United States

doi: 10.1111/gcb.14317
pmid: 29777620
AbstractCities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization on vegetation growth into direct (replacement of original land surfaces by impervious built‐up) and indirect (urban environments) components, using a conceptual framework and remotely sensed data for 377 metropolitan statistical areas (MSAs) in the conterminous United States (CONUS) in 2001, 2006, and 2011. Results showed that urban pixels are often greener than expected given the amount of paved surface they contain. The vegetation growth enhancement due to indirect effects occurred in 88.4%, 90.8%, and 92.9% of urban bins in 2001, 2006, and 2011, respectively. By defining offset value as the ratio of the absolute indirect and direct impact, we obtained that growth enhancement due to indirect effects compensated for about 29.2%, 29.5%, and 31.0% of the reduced productivity due to loss of vegetated surface area on average in 2001, 2006, and 2011, respectively. Vegetation growth responses to urbanization showed little temporal variation but large regional differences with higher offset value in the western CONUS than in the eastern CONUS. Our study highlights the prevalence of vegetation growth enhancement in urban environments and the necessity of differentiating various impacts of urbanization on vegetation growth, and calls for tailored field experiments to understand the relative contributions of various driving forces to vegetation growth and predict vegetation responses to future global change using cities as harbingers.
- Central University of Technology South Africa
- Central South University China (People's Republic of)
- Central South University of Forestry and Technology China (People's Republic of)
- Central South University of Forestry and Technology China (People's Republic of)
- Central University of Technology South Africa
Climate, Climate Change, Urbanization, Plant Development, Environment, United States, Cities
Climate, Climate Change, Urbanization, Plant Development, Environment, United States, Cities
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
