Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbon budgets of wetland ecosystems in China

Authors: Chunbo Huang; Kun Tian; Derong Xiao; Lei Deng; Lei Deng; Dong-Gill Kim;

Carbon budgets of wetland ecosystems in China

Abstract

AbstractWetlands contain a large proportion of carbon (C) in the biosphere and partly affect climate by regulating C cycles of terrestrial ecosystems. China contains Asia's largest wetlands, accounting for about 10% of the global wetland area. Although previous studies attempted to estimate C budget in China's wetlands, uncertainties remain. We conducted a synthesis to estimate C uptake and emission of wetland ecosystems in China using a dataset compiled from published literature. The dataset comprised 193 studies, including 370 sites representing coastal, river, lake and marsh wetlands across China. In addition, C stocks of different wetlands in China were estimated using unbiased data from the China Second Wetlands Survey. The results showed that China's wetlands sequestered 16.87 Pg C (315.76 Mg C/ha), accounting for about 3.8% of C stocks in global wetlands. Net ecosystem productivity, jointly determined by gross primary productivity and ecosystem respiration, exhibited annual C sequestration of 120.23 Tg C. China's wetlands had a total gaseous C loss of 173.20 Tg C per year from soils, including 154.26 Tg CO2‐C and 18.94 Tg CH4‐C emissions. Moreover, C stocks, uptakes and gaseous losses varied with wetland types, and were affected by geographic location and climatic factors (precipitation and temperature). Our results provide better estimation of the C budget in China's wetlands and improve understanding of their contribution to the global C cycle in the context of global climate change.

Related Organizations
Keywords

China, Climate Change, Carbon, Carbon Cycle, Soil, Wetlands, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 1%
Top 10%
Top 1%