Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust ecological drought projections for drylands in the 21st century

Authors: Kyle A. Palmquist; William K. Lauenroth; Daniel R. Schlaepfer; Daniel R. Schlaepfer; John B. Bradford;

Robust ecological drought projections for drylands in the 21st century

Abstract

AbstractDryland ecosystems may be especially vulnerable to expected 21st century increases in temperature and aridity because they are tightly controlled by moisture availability. However, climate impact assessments in drylands are difficult because ecological dynamics are dictated by drought conditions that are difficult to define and complex to estimate from climate conditions alone. In addition, precipitation projections vary substantially among climate models, enhancing variation in overall trajectories for aridity. Here, we constrain this uncertainty by utilizing an ecosystem water balance model to quantify drought conditions with recognized ecological importance, and by identifying changes in ecological drought conditions that are robust among climate models, defined here as when >90% of models agree in the direction of change. Despite limited evidence for robust changes in precipitation, changes in ecological drought are robust over large portions of drylands in the United States and Canada. Our results suggest strong regional differences in long‐term drought trajectories, epitomized by chronic drought increases in southern areas, notably the Upper Gila Mountains and South‐Central Semi‐arid Prairies, and decreases in the north, particularly portions of the Temperate and West‐Central Semi‐arid Prairies. However, we also found that exposure to hot‐dry stress is increasing faster than mean annual temperature over most of these drylands, and those increases are greatest in northern areas. Robust shifts in seasonal drought are most apparent during the cool season; when soil water availability is projected to increase in northern regions and decrease in southern regions. The implications of these robust drought trajectories for ecosystems will vary geographically, and these results provide useful insights about the impact of climate change on these dryland ecosystems. More broadly, this approach of identifying robust changes in ecological drought may be useful for other assessments of climate impacts in drylands and provide a more rigorous foundation for making long‐term strategic resource management decisions.

Keywords

Canada, Soil, Climate Change, Ecosystem, Droughts

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 1%
Top 10%
Top 0.1%