
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Urbanization imprint on land surface phenology: The urban–rural gradient analysis for Chinese cities


Xiaoyang Zhang

Shuqing Zhao
doi: 10.1111/gcb.15602
pmid: 33779020
AbstractRising temperature shifts plant phenology. Chinese cities, experiencing extensive expansion and intensive warming, spanning a wide latitudinal range, might provide ideal experimental opportunities for observing and predicting phenological responses to warming temperature. Using the urban–rural gradient approach, we explored urbanization imprint on land surface phenology across the entire urbanization intensity (UI) gradient ranging from 0% to 100% in 343 Chinese cities using the VIIRS Land Surface Phenology along with MODIS Land Surface Temperature (LST) products. We found prevalent advancing and delaying trends for the start of the growing season (SOS) and the end of the growing season (EOS) with increasing UI across 343 Chinese cities, respectively. Overall, the phenology shifted earlier by 8.6 ± 0.54 days for SOS, later by 1.3 ± 0.51 days for EOS, and lengthened by 9.9 ± 0.77 days for the growing season length (GSL) in urban core areas (UI above 50%) relative to their rural counterparts (UI lower than 1%). The temperature sensitivity of SOS and EOS was 10.5 ± 0.25 days earlier and 2.9 ± 0.16 days later per 1°C LST increase in spring and autumn, respectively. Moreover, the northern cities witnessed higher temperature sensitivity for SOS and EOS than the southern ones. Both spring and autumn temperature sensitivity across these 343 cities would likely decrease with future urban warming, suggesting any projections of future phenological responses to continued warming must be approached with caution.
- Stanford University United States
- Michigan State University United States
- Northeastern University China (People's Republic of)
- South Dakota State University United States
- Michigan State University United States
China, Climate Change, Urbanization, Temperature, Plant Development, Seasons, Cities
China, Climate Change, Urbanization, Temperature, Plant Development, Seasons, Cities
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).69 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
