Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study

Authors: Liyuan He; Chun‐Ta Lai; Melanie A. Mayes; Shohei Murayama; Xiaofeng Xu;

Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study

Abstract

AbstractSeasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions represent a fundamental mechanism regulating the terrestrial–climate interaction. We applied a microbial explicit model—CLM‐Microbe—to evaluate the impacts of microbial seasonality on soil C cycling in terrestrial ecosystems. The CLM‐Microbe model was validated in simulating belowground respiratory fluxes, that is, microbial respiration, root respiration, and soil respiration at the site level. On average, the CLM‐Microbe model explained 72% (n = 19, p < 0.0001), 65% (n = 19, p < 0.0001), and 71% (n = 18, p < 0.0001) of the variation in microbial respiration, root respiration, and soil respiration, respectively. We then compared the model simulations of soil respiratory fluxes and soil organic C content in top 1 m between the CLM‐Microbe model with (CLM‐Microbe) and without (CLM‐Microbe_wos) seasonal dynamics of soil microbial biomass in natural biomes. Removing soil microbial seasonality reduced model performance in simulating microbial respiration and soil respiration, but led to slight differences in simulating root respiration. Compared with the CLM‐Microbe, the CLM‐Microbe_wos underestimated the annual flux of microbial respiration by 0.6%–32% and annual flux of soil respiration by 0.4%–29% in natural biomes. Correspondingly, the CLM‐Microbe_wos estimated higher soil organic C content in top 1 m (0.2%–7%) except for the sites in Arctic and boreal regions. Our findings suggest that soil microbial seasonality enhances soil respiratory C emissions, leading to a decline in SOC storage. An explicit representation of soil microbial seasonality represents a critical improvement for projecting soil C decomposition and reducing the uncertainties in global C cycle projection under the changing climate.

Keywords

Carbon, Soil, Biomass, Ecosystem, Soil Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%