Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Patterns of post‐drought recovery are strongly influenced by drought duration, frequency, post‐drought wetness, and bioclimatic setting

Authors: Tong Jiao; Christopher A. Williams; Martin G. De Kauwe; Christopher R. Schwalm; Belinda E. Medlyn;

Patterns of post‐drought recovery are strongly influenced by drought duration, frequency, post‐drought wetness, and bioclimatic setting

Abstract

AbstractUnderstanding vegetation recovery after drought is critical for projecting vegetation dynamics in future climates. From 1997 to 2009, Australia experienced a long‐lasting drought known as the Millennium Drought (MD), which led to widespread reductions in vegetation productivity. However, vegetation recovery post‐drought and its determinants remain unclear. This study leverages remote sensing products from different sources—fraction of absorbed photosynthetically active radiation (FPAR), based on optical data, and canopy density, derived from microwave data—and random forest algorithms to assess drought recovery over Australian natural vegetation during a 20‐year period centered on the MD. Post‐drought recovery was prevalent across the continent, with 6 out of 10 drought events seeing full recovery within about 6 months. Canopy density was slower to recover than leaf area seen in FPAR. The probability of full recovery was most strongly controlled by drought return interval, post‐drought hydrological condition, and drought length. Full recovery was seldom observed when drought events occurred at intervals of 3 months or less, and moderately dry (standardized water balance anomaly [SWBA] within [−1, −0.76]) post‐drought conditions resulted in less complete recovery than wet (SWBA > 0.3) post‐drought conditions. Press droughts, which are long term but not extreme, delayed recovery more than pulse droughts (short term but extreme) and led to a higher frequency of persistent decline. Following press droughts, the frequency of persistent decline differed little among biome types but peaked in semi‐arid regions across aridity levels. Forests and savanna required the longest recovery times for press drought, while grasslands were the slowest to recover for pulse drought. This study provides quantitative thresholds that could be used to improve the modeling of ecosystem dynamics post‐drought.

Country
United Kingdom
Keywords

Australian natural vegetation, Climate Change, Australia, 910, Millennium Drought, vegetation optical depth, Droughts, Plant Leaves, random forest classification, post-drought recovery, XXXXXX - Unknown, Ecosystem, pulse droughts and press droughts

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 1%
Top 10%
Top 1%