Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Divergent responses of primary production to increasing precipitation variability in global drylands

Authors: Enqing Hou; Marcy E. Litvak; Jennifer A. Rudgers; Lifen Jiang; Scott L. Collins; William T. Pockman; Dafeng Hui; +2 Authors

Divergent responses of primary production to increasing precipitation variability in global drylands

Abstract

AbstractInterannual variability in precipitation has increased globally as climate warming intensifies. The increased variability impacts both terrestrial plant production and carbon (C) sequestration. However, mechanisms driving these changes are largely unknown. Here, we examined mechanisms underlying the response of aboveground net primary production (ANPP) to interannual precipitation variability in global drylands with mean annual precipitation (MAP) <500 mm year−1, using a combined approach of data synthesis and process‐based modeling. We found a hump‐shaped response of ANPP to precipitation variability along the MAP gradient. The response was positive when MAP < ~300 mm year−1 and negative when MAP was higher than this threshold, with a positive peak at 140 mm year−1. Transpiration and subsoil water content mirrored the response of ANPP to precipitation variability; evaporation responded negatively and water loss through runoff and drainage responded positively to precipitation variability. Mean annual temperature, soil type, and plant physiological traits all altered the magnitude but not the pattern of the response of ANPP to precipitation variability along the MAP gradient. By extrapolating to global drylands (<500 mm year−1 MAP), we estimated that ANPP would increase by 15.2 ± 6.0 Tg C year−1 in arid and hyper‐arid lands and decrease by 2.1 ± 0.5 Tg C year−1 in dry sub‐humid lands under future changes in interannual precipitation variability. Thus, increases in precipitation variability will enhance primary production in many drylands in the future.

Keywords

Climate, Climate Change, Rain, Plants, Soil, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 1%