
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Tropical tall forests are more sensitive and vulnerable to drought than short forests

doi: 10.1111/gcb.16017
pmid: 34854168
AbstractOur limited understanding of the impacts of drought on tropical forests significantly impedes our ability in accurately predicting the impacts of climate change on this biome. Here, we investigated the impact of drought on the dynamics of forest canopies with different heights using time‐series records of remotely sensed Ku‐band vegetation optical depth (Ku‐VOD), a proxy of top‐canopy foliar mass and water content, and separated the signal of Ku‐VOD changes into drought‐induced reductions and subsequent non‐drought gains. Both drought‐induced reductions and non‐drought increases in Ku‐VOD varied significantly with canopy height. Taller tropical forests experienced greater relative Ku‐VOD reductions during drought and larger non‐drought increases than shorter forests, but the net effect of drought was more negative in the taller forests. Meta‐analysis of in situ hydraulic traits supports the hypothesis that taller tropical forests are more vulnerable to drought stress due to smaller xylem‐transport safety margins. Additionally, Ku‐VOD of taller forests showed larger reductions due to increased atmospheric dryness, as assessed by vapor pressure deficit, and showed larger gains in response to enhanced water supply than shorter forests. Including the height‐dependent variation of hydraulic transport in ecosystem models will improve the simulated response of tropical forests to drought.
- Paris 13 University France
- Ottawa Research and Development Centre Canada
- Département Sciences sociales, agriculture et alimentation, espace et environnement France
- University of Hong Kong China (People's Republic of)
- University of Paris-Saclay France
[SDE] Environmental Sciences, canopy height, Climate Change, drought, Forests, 551, 630, vegetation optical depth, Trees, Ecosystem, tropical forests, Tropical Climate, microwave remote sensing, canopy dynamics, Droughts, [SDE]Environmental Sciences
[SDE] Environmental Sciences, canopy height, Climate Change, drought, Forests, 551, 630, vegetation optical depth, Trees, Ecosystem, tropical forests, Tropical Climate, microwave remote sensing, canopy dynamics, Droughts, [SDE]Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
