Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

One hundred‐seventy years of stressors erode salmon fishery climate resilience in California’s warming landscape

Authors: Stuart H. Munsch; Correigh M. Greene; Nathan J. Mantua; William H. Satterthwaite;

One hundred‐seventy years of stressors erode salmon fishery climate resilience in California’s warming landscape

Abstract

AbstractPeople seek reliable natural resources despite climate change. Diverse habitats and biologies stabilize productivity against disturbances like climate, prompting arguments to promote climate‐resilient resources by prioritizing complex, less‐modified ecosystems. These arguments hinge on the hypothesis that simplifying and degrading ecosystems will reduce resources’ climate resilience, a process liable to be cryptically evolving across landscapes and human generations, but rarely documented. Here, we examined the industrial era (post 1848) of California's Central Valley, chronicling the decline of a diversified, functional portfolio of salmon habitats and life histories and investigating for empirical evidence of lost climate resilience in its fishery. Present perspectives indicate that California's dynamic, warming climate overlaid onto its truncated, degraded habitat mosaic severely constrains its salmon fishery. We indeed found substantial climate constraints on today's fishery, but this reflected a shifted ecological baseline. During the early stages of a stressor legacy that transformed the landscape and ‐‐ often consequently ‐‐ compressed salmon life history expression, the fishery diffused impacts of dry years across a greater number of fishing years and depended less on cool spring‐summer transitions. The latter are important given today's salmon habitats, salmon life histories, and resource management practices, but are vanishing with climate change while year‐to‐year variation in fishery performance is rising. These findings give empirical weight to the idea that human legacies influence ecosystems’ climate resilience across landscapes and boundaries (e.g., land/sea). They also raise the question of whether some contemporary climate effects are recent and attributable not only to increasing climate stress, but to past and present human actions that erode resilience. In general, it is thus worth considering that management approaches that prioritize complex, less‐modified ecosystems may stabilize productivity despite increasing climate stress and such protective actions may be required for some ecological services to persist into uncertain climate futures.

Country
United States
Related Organizations
Keywords

570, Climate Change, Fisheries, 577, California, diversity, Salmon, Animals, Humans, habitat mosaic, natural resources, Ecosystem, disturbance, shifting baselines, historical ecology, Ecology, Biological Sciences, Environmental Management, Climate Action, biocomplexity, Environmental sciences, Biological sciences, Earth sciences, climate change, Ecological Applications, Environmental Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green