Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models

Authors: Katherine Carbeck; Tongli Wang; Jane M. Reid; Peter Arcese;

Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models

Abstract

AbstractPredicting the geographic range of species and their response to climatic variation and change are entwined goals in conservation and evolutionary ecology. Species distribution models (SDMs) are foundational in this effort and used to visualize the geographic range of species as the spatial representation of its realized niche. SDMs are also used to forecast range shifts under climate change, but often in the absence of empirical evidence that climate limits population growth. We explored the influence of climate on demography, seasonal migration, and the extent of the geographic range in song sparrows (Melospiza melodia), a species thought to display marked local adaptation to regional climate. To do so, we developed SDMs to predict the demographic and climate niches of migratory and resident song sparrows across our study area in western North America from California to Alaska, using 48 years of demographic data from a focal population in British Columbia and 1.2 million continental‐scale citizen science observations. Spatial agreement of our demographic and climate niche models in the region of our focal population was strong (76%), supporting the hypothesis that demographic performance and the occurrence of seasonal migration varied predictably with climatic conditions. In contrast, agreement at the northern (58%) and southern (40%) extents of our study area was lower, as expected if the factors limiting population growth vary regionally. Our results support the hypothesis that local climate drives spatial variation in the occurrence of seasonal migration in song sparrows by limiting the fitness of year‐round residents, and suggest that climate warming has favored range expansions and facilitated an upward shift in elevational range song sparrows that forgo seasonal migration. Our work highlights the potential role of seasonal migration in climate adaptation and limits on the reliability of climate niche models not validated with demographic data.

Country
United Kingdom
Related Organizations
Keywords

Supplementary Information, 330, Supplementary Data, QH301 Biology, Climate Change, climate adaptation, QH301, SDG 13 - Climate Action, Population Growth, Ecosystem, species distribution model, Reproducibility of Results, Biological Evolution, demographic niche, climate niche, population growth, Melospiza melodia, Seasons, migratory behavior

Powered by OpenAIRE graph
Found an issue? Give us feedback