

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Winter warming offsets one half of the spring warming effects on leaf unfolding

AbstractWinter temperature‐related chilling and spring temperature‐related forcing are two major environmental cues shaping the leaf‐out date of temperate species. To what degree insufficient chilling caused by winter warming would slow phenological responses to spring warming remains unclear. Using 27,071 time series of leaf‐out dates for 16 tree species in Europe, we constructed a phenological model based on the linear or exponential function between the chilling accumulation (CA) and forcing requirements (FR) of leaf‐out. We further used the phenological model to quantify the relative contributions of chilling and forcing on past and future spring phenological change. The results showed that the delaying effect of decreased chilling on the leaf‐out date was prevalent in natural conditions, as more than 99% of time series exhibited a negative relationship between CA and FR. The reduction in chilling linked to winter warming from 1951 to 2014 could offset about one half of the spring phenological advance caused by the increase in forcing. In future warming scenarios, if the same model is used and a linear, stable correlation between CA and FR is assumed, declining chilling will continuously offset the advance of leaf‐out to a similar degree. Our study stresses the importance of assessing the antagonistic effects of winter and spring warming on leaf‐out phenology.
- Beijing Normal University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Global Ecology Unit CREAF-CSIC-UAB Spain
- Institute of Geographic Sciences and Natural Resources Research China (People's Republic of)
Climate Change, Future change, Temperature, Leaf unfolding, Trees, Europe, Plant Leaves, Climate warming, Phenology, Forcing, Seasons, Chilling, Research Articles
Climate Change, Future change, Temperature, Leaf unfolding, Trees, Europe, Plant Leaves, Climate warming, Phenology, Forcing, Seasons, Chilling, Research Articles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 56 download downloads 108 - 56views108downloads
Data source Views Downloads DIGITAL.CSIC 56 108


