

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climatic seasonality challenges the stability of microbial‐driven deep soil carbon accumulation across China

AbstractMicrobial residues contribute to the long‐term stabilization of carbon in the entire soil profile, helping to regulate the climate of the planet; however, how sensitive these residues are to climatic seasonality remains virtually unknown, especially for deep soils across environmental gradients. Here, we investigated the changes of microbial residues along soil profiles (0–100 cm) from 44 typical ecosystems with a wide range of climates (~3100 km transects across China). Our results showed that microbial residues account for a larger portion of soil carbon in deeper (60–100 cm) vs. shallower (0–30 and 30–60 cm) soils. Moreover, we find that climate especially challenges the accumulation of microbial residues in deep soils, while soil properties and climate share their roles in controlling the residue accumulation in surface soils. Climatic seasonality, including positive correlations with summer precipitation and maximum monthly precipitation, as well as negative correlations with temperature annual range, are important factors explaining microbial residue accumulation in deep soils across China. In particular, summer precipitation is the key regulator of microbial‐driven carbon stability in deep soils, which has 37.2% of relative independent effects on deep‐soil microbial residue accumulation. Our work provides novel insights into the importance of climatic seasonality in driving the stabilization of microbial residues in deep soils, challenging the idea that deep soils as long‐term carbon reservoirs can buffer climate change.
- Spanish National Research Council Spain
- Oakland University United States
- Pablo de Olavide University Spain
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau China (People's Republic of)
- Huazhong Agricultural University China (People's Republic of)
Mmicrobial residues, China, 550, Climate Change, Summer precipitation, Deep soil, Carbon, Soil, Soil carbon stabilization, XXXXXX - Unknown, Soil profile, Climate-carbon feedback, Ecosystem, Soil Microbiology
Mmicrobial residues, China, 550, Climate Change, Summer precipitation, Deep soil, Carbon, Soil, Soil carbon stabilization, XXXXXX - Unknown, Soil profile, Climate-carbon feedback, Ecosystem, Soil Microbiology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 110 download downloads 497 - 110views497downloads
Data source Views Downloads DIGITAL.CSIC 110 497


