
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate change amplifies the risk of potentially toxigenic cyanobacteria

doi: 10.1111/gcb.16838
pmid: 37409538
AbstractCyanobacterial blooms pose a significant threat to water security, with anthropogenic forcing being implicated as a key driver behind the recent upsurge and global expansion of cyanobacteria in modern times. The potential effects of land‐use alterations and climate change can lead to complicated, less‐predictable scenarios in cyanobacterial management, especially when forecasting cyanobacterial toxin risks. There is a growing need for further investigations into the specific stressors that stimulate cyanobacterial toxins, as well as resolving the uncertainty surrounding the historical or contemporary nature of cyanobacterial‐associated risks. To address this gap, we employed a paleolimnological approach to reconstruct cyanobacterial abundance and microcystin‐producing potential in temperate lakes situated along a human impact gradient. We identified breakpoints (i.e., points of abrupt change) in these time series and examined the impact of landscape and climatic properties on their occurrence. Our findings indicate that lakes subject to greater human influence exhibited an earlier onset of cyanobacterial biomass by 40 years compared to less‐impacted lakes, with land‐use change emerging as the dominant predictor. Moreover, microcystin‐producing potential increased in both high‐ and low‐impact lakes around the 1980s, with climate warming being the primary driver. Our findings chronicle the importance of climate change in increasing the risk of toxigenic cyanobacteria in freshwater resources.
- Queen's University Canada
- University of Manitoba Canada
- University of Saskatchewan Canada
- University of Toronto Canada
Lakes, Microcystins, Climate Change, Humans, Biomass, Eutrophication, Cyanobacteria
Lakes, Microcystins, Climate Change, Humans, Biomass, Eutrophication, Cyanobacteria
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
