
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The recovery of crustacean zooplankton from acidification depends on lake type

AbstractAcidification has harmed freshwater ecosystems in Northern Europe since the early 1900s. Stricter regulations aimed at decreasing acidic emissions have improved surface‐water chemistry since the late 1980s but the recovery of biotic communities has not been consistent. Generally, the recovery of flora and fauna has been documented only for a few lakes or regions and large‐scale assessments of long‐term dynamics of biotic communities due to improved water quality are still lacking. This study investigates a large biomonitoring dataset of pelagic and littoral crustacean zooplankton (Cladocera and Copepoda) from 142 acid‐sensitive lakes in Norway spanning 24 years (1997–2020). The aims were to assess the changes in zooplankton communities through time, compare patterns of changes across lake types (defined based on calcium and humic content), and identify correlations between abiotic and biological variables. Our results indicate chemical and biological recovery after acidification, as shown by a general increase in pH, acid neutralizing capacity, changes in community composition and increases in the total number of species, number of acid‐sensitive species and functional richness through time. However, the zooplankton responses differ across lake types. This indicates that the concentration of calcium (or alkalinity) and total organic carbon (or humic substances) are important factors for the recovery. Therefore, assessment methods and management tools should be adapted to the diverse lake types. Long‐term monitoring of freshwater ecosystems is needed to fully comprehend the recovery dynamics of biotic communities from acidification.
browning, copepods, pH, VDP::Zoologiske og botaniske fag: 480, functional richness, Northern Europe, Hydrogen-Ion Concentration, microcrustaceans, Zooplankton, Lakes, climate change, acid-sensitive species, VDP::Zoology and botany: 480, Animals, Calcium, community composition, cladocerans, Ecosystem
browning, copepods, pH, VDP::Zoologiske og botaniske fag: 480, functional richness, Northern Europe, Hydrogen-Ion Concentration, microcrustaceans, Zooplankton, Lakes, climate change, acid-sensitive species, VDP::Zoology and botany: 480, Animals, Calcium, community composition, cladocerans, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
