Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2025 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimistic growth of marginal region plantations under climate warming: Assessing divergent drought resilience

Authors: Jitang Li; Yuyang Xie; Jesús Julio Camarero; Antonio Gazol; Ester González de Andrés; Lingxiao Ying; Zehao Shen;

Optimistic growth of marginal region plantations under climate warming: Assessing divergent drought resilience

Abstract

AbstractGiven the context of significant global warming and the intensification of extreme climate events in the last century, large‐scale reforestation and afforestation have been recognized as effective strategies to mitigate the climate crisis. Since the 1970s, China has launched several afforestation programs aimed at regional ecological protection, playing an important role in reaching carbon neutrality by 2060. This study provided a detailed analysis of the growth suitability of the main planted conifers (Pinus sylvestris var. mongolica and Pinus tabulaeformis) and broadleaves (Populus spp., Robinia pseudoacacia) in the semi‐arid northern China. We compared the radial growth trends of plantations and their responses to extreme droughts from 1980 to 2018. Growth of most plantations has significantly increased over time, but broadleaves showed recent growth reductions in the past decade, which may be related to tree age and reduced soil moisture. Nevertheless, under warmer climate scenarios, the growth of plantations is forecasted to continue increasing. Broadleaves showed a better post‐drought recovery, probably linked to their anisohydric behavior, than conifers, which presented a better resistance to drought. Growth of conifers depended more on warmer temperature and better precipitation conditions during the growing season, whereas broadleaves mainly reacted to warm temperature. Additionally, pre‐drought growth levels weakened resilience components, while post‐drought precipitation compensated for drought‐induced growth deficit. Growth and resilience were negatively related to tree age, while higher stand density reduced growth. This assessment and projections of growth and drought resilience indicate the sustainability of most plantations in semi‐arid regions, but future warmer and drier conditions may lead to an uncertain future regarding forest health and reduce their carbon sink potential.

Country
Spain
Related Organizations
Keywords

China, Conservation of Natural Resources, Drought resilience, Climate Change, Plantations, Temperature, Forestry, Growth trends, Pinus, Global Warming, Droughts, Trees, Three-North Shelter Forests Program, Tree-ring analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 24
    download downloads 14
  • 24
    views
    14
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC2414
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Average
Average
Top 10%
24
14
Related to Research communities
Energy Research