
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Initial soil C and land‐use history determine soil C sequestration under perennial bioenergy crops

doi: 10.1111/gcbb.12311
handle: 2164/7774
AbstractIn the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha−1 and 26.83 ± 8.08 Mg C ha−1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.
- University of Edinburgh United Kingdom
- University of Aberdeen United Kingdom
- Aberystwyth University United Kingdom
- Institute of Biological, Environmental and Rural Sciences United Kingdom
- Natural Environment Research Council United Kingdom
550, QH301 Biology, Miscanthus, bioenergy, land-use change, QH301, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Renewable Energy, soil carbon, Waste Management and Disposal, SDG 15 - Life on Land, Sustainability and the Environment, SRC willow, 500, Forestry, carbon stocks, Agriculture and Soil Science, Carbon Stocks, Agronomy and Crop Science
550, QH301 Biology, Miscanthus, bioenergy, land-use change, QH301, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Renewable Energy, soil carbon, Waste Management and Disposal, SDG 15 - Life on Land, Sustainability and the Environment, SRC willow, 500, Forestry, carbon stocks, Agriculture and Soil Science, Carbon Stocks, Agronomy and Crop Science
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).45 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
