Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MINES ParisTech: Ope...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL - Université de Lille
Article . 2021
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2021
License: CC BY
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variability of stem solidness among miscanthus genotypes and its role on mechanical properties of polypropylene composites

Authors: Brancourt‐hulmel, Maryse; Raverdy, Raphaël; Girones, Jordi; Arnoult, Stéphanie; Mignot, Emilie; Griveaux, Yves; Navard, Patrick;

Variability of stem solidness among miscanthus genotypes and its role on mechanical properties of polypropylene composites

Abstract

AbstractMiscanthus (Miscanthus Andersson) is a perennial grass that is attracting growing interest from the biomaterial industry. Our aim was to compare miscanthus genotypes varying in stem solidness, a measure of degree to which pith fills cavity between the outer walls of the stem, and analyze whether this trait influences the mechanical properties of polypropylene composites reinforced with miscanthus particles. Six contrasting genotypes were chosen from a Miscanthus sinensis population to determine morphological variables, stem solidness, and mechanical properties of polypropylene composites including 30% of milled miscanthus particles of two sizes of 100 < × < 200 μm and 200 < × < 300 μm. Although aboveground biomass of miscanthus was closely related to the aboveground volume of the plant, namely stand volume, a few genotypes showed contrasting aboveground biomass production for similar stand volumes. This generated contrasting ratio between aboveground biomass and stand volume, namely plant‐specific weights, for similar plant volumes. A principal component analysis showed that fully pith‐filled stems, namely solid stems, were explained by a large stand volume and plant‐specific weights as well as small stem cross‐sections. Genotypes showing partially filled stems were taller with larger stem cross‐sections but smaller plant‐specific weights. They revealed high lignin and p‐coumaric acid contents. Compared to neat‐polypropylene, Young's modulus increased significantly by 139% and 134% and tensile strength by 39% and 36% for genotypes with partially filled stems compared to genotypes with fully pith‐filled stems, respectively. This difference in reinforcing capacity was similar to that of two particle sizes (139% and 134% for Young's modulus, 41% and 34% for tensile strength, respectively). A good tensile strength was obtained with large cross‐stem section, plant height and lignin and p‐coumaric acid contents. It decreased with plant‐specific weight, hemicellulose and ferulic acid contents. Wider morphological variations in other progenies or Miscanthus species should be explored further using the techniques reported here.

Country
France
Keywords

specific weight, 571, biomass, TJ807-830, [SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics, composites, Miscanthus sinensis, Energy industries. Energy policy. Fuel trade, 630, [SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph], Renewable energy sources, [SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics, cell-wall, genotypes, [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph], cell wall, HD9502-9502.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold
Funded by
Related to Research communities
Energy Research