Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publication Server o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Different life‐form strategies of perennial energy crops and related nutrient exports require a differentiating view specifically concerning a sustainable cultivation on marginal land

Authors: Thorsten Ruf; Christoph Emmerling;

Different life‐form strategies of perennial energy crops and related nutrient exports require a differentiating view specifically concerning a sustainable cultivation on marginal land

Abstract

AbstractPerennial energy crops (PECs) are increasingly used as feedstock to produce energy in an environmental friendly way. Compared to traditional conversion strategies like thermal use, sophisticated technologies such as biomethanation defined different requirements of the feedstock. Whereas the first concept relies on dry, woody material, biomethanation requires a moist feedstock. Thus, over time, the spectrum of species used as PECs has widened. Moreover, harvest dates were adjusted to provide the feedstock at suitable moisture contents. It is well known that perennial, lignocellulose‐based energy crops, compared to annual, sugar‐ and starch‐based ones, offer ecological advantages such as, inter alia, improving biodiversity in landscape, protecting soil against erosion, and protecting groundwater from nutrient inputs. However, one of the main arguments for PEC cultivation was their undemanding nature concerning external inputs. With respect to the broader spectrum of PEC species and changed harvest dates, the question arises whether the concept of PECs being low‐input energy crops is still valid. This also implies the question of suitable growing conditions and sustainable management. The aims of this opinion paper were to classify different PECs according to their life‐form strategy, compare nutrient exports when harvested in different maturation stages, and to discuss the results in the context of sustainable PEC cultivation on marginal land. This study revealed that nutrient exports with yield biomass of PECs harvested in green state are in the same range than those of annual energy crops and therewith several times higher than those of PECs harvested in brown state or of woody short rotation coppices. Thus, PECs cannot universally be claimed as low‐input energy crops. These results also imply the consequences of cultivation of PECs on marginal land. Finally, the question has to be raised whether the term PECs should prospectively be better specified in written and spoken words.

Country
Germany
Related Organizations
Keywords

4262502-6, 4473008-1, 4308828-4, TJ807-830, 710, mature harvest, 910, Energy industries. Energy policy. Fuel trade, Renewable energy sources, premature harvest, Nährstoffverlust, 4152839-6, harvest dates, low‐input management, Ausdauernde Pflanzen, Energiepflanzen, nutrient exports, Ernte, Reisen, ddc:910, HD9502-9502.5, Geografie, nutrient demands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold