
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Soil phosphorus drawdown by perennial bioenergy cropping systems in the Midwestern US

doi: 10.1111/gcbb.13020
handle: 10072/429783
AbstractWithout fertilization, harvest of perennial bioenergy cropping systems diminishes soil nutrient stocks, yet the time course of nutrient drawdown has not often been investigated. We analyzed phosphorus (P) inputs (fertilization and atmospheric deposition) and outputs (harvest and leaching losses) over 7 years in three representative biomass crops—switchgrass (Panicum virgatum L.), miscanthus (Miscanthus × giganteus) and hybrid poplar trees (Populus nigra × P. maximowiczii)—as well as in no‐till corn (maize; Zea mays L.) for comparison, all planted on former cropland in SW Michigan, USA. Only corn received P fertilizer. Corn (grain and stover), switchgrass, and miscanthus were harvested annually, while poplar was harvested after 6 years. Soil test P (STP; Bray‐1 method) was measured in the upper 25 cm of soil annually. Harvest P removal was calculated from tissue P concentration and harvest yield (or annual woody biomass accrual in poplar). Leaching was estimated as total dissolved P concentration in soil solutions sampled beneath the rooting depth (1.25 m), combined with hydrological modeling. Fertilization and harvest were by far the dominant P budget terms for corn, and harvest P removal dominated the P budgets in switchgrass, miscanthus, and poplar, while atmospheric deposition and leaching losses were comparatively insignificant. Because of significant P removal by harvest, the P balances of switchgrass, miscanthus, and poplar were negative and corresponded with decreasing STP, whereas P fertilization compensated for the harvest P removal in corn, resulting in a positive P balance. Results indicate that perennial crop harvest without P fertilization removed legacy P from soils, and continued harvest will soon draw P down to limiting levels, even in soils once heavily P‐fertilized. Widespread cultivation of bioenergy crops may, therefore, alter P balances in agricultural landscapes, eventually requiring P fertilization, which could be supplied by P recovery from harvested biomass.
- Michigan State University United States
- Michigan State University United States
- Griffith University Australia
- University of Michigan Biological Station United States
- Griffith University Australia
Technology, Science & Technology, Agricultural biotechnology, switchgrass, TJ807-830, Energy industries. Energy policy. Fuel trade, Agronomy, Renewable energy sources, corn, Climate change impacts and adaptation, Biotechnology & Applied Microbiology, poplar, miscanthus, HD9502-9502.5, legacy phosphorus, phosphorus, Life Sciences & Biomedicine
Technology, Science & Technology, Agricultural biotechnology, switchgrass, TJ807-830, Energy industries. Energy policy. Fuel trade, Agronomy, Renewable energy sources, corn, Climate change impacts and adaptation, Biotechnology & Applied Microbiology, poplar, miscanthus, HD9502-9502.5, legacy phosphorus, phosphorus, Life Sciences & Biomedicine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
