Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global warming intensity of biofuel derived from switchgrass grown on marginal land in Michigan

Authors: Seungdo Kim; Bruce E. Dale; Rafael Martinez‐Feria; Bruno Basso; Kurt Thelen; Christos T. Maravelias; Douglas Landis; +2 Authors

Global warming intensity of biofuel derived from switchgrass grown on marginal land in Michigan

Abstract

AbstractEnergy crops for biofuel production, especially switchgrass (Panicum virgatum), are of interest from a climate change perspective. Here, we use outputs from a crop growth model and life cycle assessment (LCA) to examine the global warming intensity (GWI; g CO2 MJ−1) and greenhouse gas (GHG) mitigation potential (Mg CO2 year−1) of biofuel systems based on a spatially explicit analysis of switchgrass grown on marginal land (abandoned former cropland) in Michigan, USA. We find that marginal lands in Michigan can annually produce over 0.57 hm3 of liquid biofuel derived from nitrogen‐fertilized switchgrass, mitigating 1.2–1.5 Tg of CO2 year−1. About 96% of these biofuels can meet the Renewable Fuel Standard (60% reduction in lifecycle GHG emissions compared with conventional gasoline; GWI ≤37.2 g CO2 MJ−1). Furthermore, 73%–75% of these biofuels are carbon‐negative (GWI less than zero) due to enhanced soil organic carbon (SOC) sequestration. However, simulations indicate that SOC levels would fail to increase and even decrease on the 11% of lands where SOC stocks >>200 Mg C ha−1, leading to carbon intensities greater than gasoline. Results highlight the strong climate mitigation potential of switchgrass grown on marginal lands as well as the needs to avoid carbon rich soils such as histosols and wetlands and to ensure that productivity will be sufficient to provide net mitigation.

Keywords

marginal land, γ‐valerolactone (GVL), TJ807-830, Energy industries. Energy policy. Fuel trade, global warming intensity, Renewable energy sources, static LCA, dynamic LCA, HD9502-9502.5, cellulosic biofuel

Powered by OpenAIRE graph
Found an issue? Give us feedback