
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Global warming intensity of biofuel derived from switchgrass grown on marginal land in Michigan

doi: 10.1111/gcbb.13024
AbstractEnergy crops for biofuel production, especially switchgrass (Panicum virgatum), are of interest from a climate change perspective. Here, we use outputs from a crop growth model and life cycle assessment (LCA) to examine the global warming intensity (GWI; g CO2 MJ−1) and greenhouse gas (GHG) mitigation potential (Mg CO2 year−1) of biofuel systems based on a spatially explicit analysis of switchgrass grown on marginal land (abandoned former cropland) in Michigan, USA. We find that marginal lands in Michigan can annually produce over 0.57 hm3 of liquid biofuel derived from nitrogen‐fertilized switchgrass, mitigating 1.2–1.5 Tg of CO2 year−1. About 96% of these biofuels can meet the Renewable Fuel Standard (60% reduction in lifecycle GHG emissions compared with conventional gasoline; GWI ≤37.2 g CO2 MJ−1). Furthermore, 73%–75% of these biofuels are carbon‐negative (GWI less than zero) due to enhanced soil organic carbon (SOC) sequestration. However, simulations indicate that SOC levels would fail to increase and even decrease on the 11% of lands where SOC stocks >>200 Mg C ha−1, leading to carbon intensities greater than gasoline. Results highlight the strong climate mitigation potential of switchgrass grown on marginal lands as well as the needs to avoid carbon rich soils such as histosols and wetlands and to ensure that productivity will be sufficient to provide net mitigation.
- Michigan State University United States
- Great Lakes Bioenergy Research Center United States
- Michigan State University United States
- University of Wisconsin–Oshkosh United States
- College of New Jersey United States
marginal land, γ‐valerolactone (GVL), TJ807-830, Energy industries. Energy policy. Fuel trade, global warming intensity, Renewable energy sources, static LCA, dynamic LCA, HD9502-9502.5, cellulosic biofuel
marginal land, γ‐valerolactone (GVL), TJ807-830, Energy industries. Energy policy. Fuel trade, global warming intensity, Renewable energy sources, static LCA, dynamic LCA, HD9502-9502.5, cellulosic biofuel
