Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Ecology and B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Biogeography
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Ecology and Biogeography
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local climate determines vulnerability to camouflage mismatch in snowshoe hares

Authors: Marketa Zimova; Alexej P. K. Sirén; Joshua J. Nowak; Alexander M. Bryan; Jacob S. Ivan; Toni Lyn Morelli; Skyler L. Suhrer; +2 Authors

Local climate determines vulnerability to camouflage mismatch in snowshoe hares

Abstract

AbstractAimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal.LocationNorth America.Time period2010–2017.Major taxa studiedSnowshoe hare (Lepus americanus).MethodsWe used > 5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring.ResultsSpatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack.Main conclusionsLong‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this variation to prioritize the populations most vulnerable under global environmental change.

Country
United States
Keywords

Geology and Earth Sciences, range edge, snowshoe hares, Science, latitudinal gradient, Ecology and Evolutionary Biology, phenological mismatch, adaptation, snow, phenotypic plasticity, 333, climate change, camouflage mismatch

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
hybrid