

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increasing winter temperatures explain body size decrease in wintering bird populations of Northern Europe—But response patterns vary along the spatioclimatic gradient

handle: 10138/567482
AbstractAimRecent evidence has shown changes in body size and shape of individuals, which are suggested to be a result of global warming caused by climate change. Here, we explored the spatiotemporal changes in wing length and body mass of 24 wintering bird species in Northern Europe and how these relate to temperature anomaly.LocationFinland and Sweden, Europe.Time Period50 years, 1970 to 2020.Major Taxa StudiedBirds, 24 species.MethodsWe used site‐specific, long‐term winter ringing data containing wing length and body mass measurements from across Sweden and Finland for 24 bird species. We modelled wing length and body mass change over time, in relation to the spatioclimatic gradient and as response to temperature anomalies (of [i] the same winter as the ringing took place, [ii] the previous winter and [iii] the previous spring) by accounting for phylogenetic relatedness between species and their species‐specific responses to each predictor of interest.ResultsWe show that across all species, body size has decreased since the 1970s, with a negative relationship between wing length and temperature anomalies of previous winters, suggesting carry‐over effects likely linked to body size‐related survival or dispersal. Body mass was negatively related to the temperature anomaly of the same winter, indicating more immediate effects related to reduced fat reserves during mild winters.Main ConclusionsOur results highlight a climate‐driven decrease in body size across several species and its association with positive anomalies in winter temperature in the high latitudes. However, the responses are not spatially uniform and there is considerable species‐specific variation, emphasizing the importance of conducting multispecies studies when investigating responses to climate change. The mechanisms of decreasing wing length and body mass seem to differ and underline the immediate and carry‐over effects of temperature warming during the nonbreeding season.
- Swedish Museum of Natural History Sweden
- Swedish Museum of Natural History Sweden
- Natural Resources Institute Finland Finland
- University of Helsinki Finland
- Finnish Museum of Natural History Finland
570, Fennoscandia, wing length, winter, body mass, Birds, Morphological changes, Environmental sciences, climate change, Body mass, Ecology, evolutionary biology, birds, Wing length, morphological changes, Climate change, ta1181
570, Fennoscandia, wing length, winter, body mass, Birds, Morphological changes, Environmental sciences, climate change, Body mass, Ecology, evolutionary biology, birds, Wing length, morphological changes, Climate change, ta1181
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 23 download downloads 28 - 23views28downloads
Data source Views Downloads ZENODO 23 28


