Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2010 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Seasonal acclimation of leaf respiration in Eucalyptus saligna trees: impacts of elevated atmospheric CO2 and summer drought

DROUGHT ACCENTUATES RESPIRATORY ACCLIMATION
Authors: Crous, Kristine Y.; Zaragoza-Castells, Joana; Low, Markus; Ellsworth, David S.; Tissue, David T.; Tjoelker, Mark G.; Barton, Craig V. M.; +2 Authors

Seasonal acclimation of leaf respiration in Eucalyptus saligna trees: impacts of elevated atmospheric CO2 and summer drought

Abstract

Understanding the impacts of atmospheric [CO2] and drought on leaf respiration (R) and its response to changes in temperature is critical to improve predictions of plant carbon-exchange with the atmosphere, especially at higher temperatures. We quantified the effects of [CO2]-enrichment (+240 ppm) on seasonal shifts in the diel temperature response of R during a moderate summer drought in Eucalyptus saligna growing in whole-tree chambers in SE Australia. Seasonal temperature acclimation of R was marked, as illustrated by: (1) a downward shift in daily temperature response curves of R in summer (relative to spring); (2)≈60% lower R measured at 20oC (R20) in summer compared with spring; and (3) homeostasis over 12 months of R measured at prevailing nighttime temperatures. R20, measured during the day, was on average 30–40% higher under elevated [CO2] compared with ambient [CO2] across both watered and droughted trees. Drought reduced R20 by≈30% in both [CO2] treatments resulting in additive treatment effects. Although [CO2] had no effect on seasonal acclimation, summer drought exacerbated the seasonal downward shift in temperature response curves of R. Overall, these results highlight the importance of seasonal acclimation of leaf R in trees grown under ambient- and elevated [CO2] as well as under moderate drought. Hence, respiration rates may be overestimated if seasonal changes in temperature and drought are not considered when predicting future rates of forest net CO2 exchange.

Country
Australia
Keywords

Elevated CO 2, Eucalyptus saligna Acclimation, drought, carbon dioxide enrichment, 551, leaf respiration, 580, Eucalyptus, droughts, Temperature, temperature, Eucalyptus saligna, carbon dioxide, tree, acclimatization, Keywords: acclimation, climate change, Leaf respiration, respiration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
Green