
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms

Summary Shallow lakes are important components of the biosphere, but they are also highly vulnerable to damage from human activities in their catchments, such as nutrient pollution. They may also be particularly vulnerable to current warming trends. Forty‐eight tanks were used to create 3‐m3 mesocosms of shallow lake communities, in which the effects of warming by 4 °C and regular nutrient loading at two levels relevant to current degrees of eutrophication were studied in the presence and absence of fish. Warming changed concentrations of soluble phosphate, total nitrogen and conductivity, increased total plant biomass and decreased the amount of phytoplankton through shading by floating plants. Nutrient additions decreased total plant biomass but increased floating plant biomass. Nitrogen increase and warming increased floating plant biomass and decreased plant species richness. The plant community remained intact and did not switch to the turbid‐water, phytoplankton‐dominated community often predicted to be a consequence of global warming and eutrophication. Synthesis and applications. Likely future temperature increase will exacerbate some, but not all symptoms of eutrophication in shallow lakes. Alone it will not cause a switch from plant‐dominated to algal‐dominated systems, but may result in nuisance growths of floating lemnids. Currently underplayed, nitrogen loading should be taken more seriously in the management of European freshwaters.
- Lancaster University United Kingdom
- State Street (United States) United States
- University of Liverpool United Kingdom
- University of California, Santa Barbara United States
- National Center for Ecological Analysis and Synthesis United States
580, temperature, floating plants, Ecology and Environment, nitrogen, macrophytes, climate change, Lemna, shallow lake
580, temperature, floating plants, Ecology and Environment, nitrogen, macrophytes, climate change, Lemna, shallow lake
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).183 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
