
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
LUMINESCENCE SPECTRA AND PHOTOCYCLOADDITION OF THE EXCITED COUMARINS TO DNA BASES

pmid: 5124622
Abstract— The lowest excited singlet and triplet states of coumarin, psoralen, and 4‐hydroxy‐coumarin have been assigned to the (π,π*) type on the basis of the luminescence spectroscopy and MO calculations. The mechanism of photocycloaddition of courmarin and psoralen to thymine has been described in terms of the perturbational MO model and MO reactivity indices. All possible cycloaddition patterns have been examined. Results suggest that the 3,4‐bond of coumarin in the excited state is somewhat more reactive than the same bond of psoralen in the excited state. It is also predicted that the 3,4‐bond of psoralen in the triplet state is more reactive than the 4′, 5′‐bond. The results have been favorably correlated with the electronic characteristics of excited coumarin molecules and with available experimental data on the relative yields of photoadducts.
- The University of Texas System United States
Luminescence, Energy Transfer, Coumarins, Photochemistry, DNA
Luminescence, Energy Transfer, Coumarins, Photochemistry, DNA
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
