Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biogeography
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling the distribution of Amazonian tree species in response to long‐term climate change during the Mid‐Late Holocene

Authors: Hans ter Steege; Hans ter Steege; Francis E. Mayle; Rafael de Paiva Salomão; Rafael de Paiva Salomão; William D. Gosling; Ima Célia Guimarães Vieira; +2 Authors

Modelling the distribution of Amazonian tree species in response to long‐term climate change during the Mid‐Late Holocene

Abstract

AbstractAimTo (a) assess the environmental suitability for rainforest tree species of Moraceae and Urticaceae across Amazonia during the Mid‐Late Holocene and (b) determine the extent to which their distributions increased in response to long‐term climate change over this period.LocationAmazonia.TaxonTree species of Moraceae and Urticaceae.MethodsWe used MaxEnt and inverse distance weighting interpolation to produce environmental suitability and relative abundance models at 0.5‐degree resolution for tree species of Moraceae and Urticaceae, based on natural history collections and a large plot dataset. To test the response of the Amazon rainforest to long‐term climate change, we quantified the increase in environmental suitability and modelled species richness for both families since the Mid‐Holocene (past 6,000 years). To test the correlation between the relative abundance of these species in modern vegetation versus modern pollen assemblages, we analysed the surface pollen spectra from 46 previously published paleoecological sites.ResultsWe found that the mean environmental suitability in Amazonia for species of Moraceae and Urticaceae showed a slight increase (6.5%) over the past 6,000 years, although southern ecotonal Amazonia and the Guiana Shield showed much higher increases (up to 68%). The accompanied modelled mean species richness increased by as much as 120% throughout Amazonia. The mean relative abundance of Moraceae and Urticaceae correlated significantly with the modern pollen assemblages for these families.Main ConclusionsIncreasing precipitation between the Mid‐ and Late Holocene expanded suitable environmental conditions for Amazonian humid rainforest tree species of Moraceae and Urticaceae, leading to rainforest expansion in ecotonal areas of Amazonia, consistent with previously published fossil pollen data.

Country
Netherlands
Keywords

570, Holocene, Ecology, Evolution, distribution modelling, Moraceae, climate change, tree species, Behavior and Systematics, SDG 13 - Climate Action, Amazonian rainforest, Urticaceae

Powered by OpenAIRE graph
Found an issue? Give us feedback