Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Industrial Ecology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hospital Patient‐Care and Outside‐the‐Hospital Energy Profiles for Hemodialysis Services

Report of Two Cases
Authors: Soltani, Seyed A.; Overcash, Michael; Twomey, Janet M.; Esmaeili, Mohammad Amin; Yildirim, Mehmet Bayram;

Hospital Patient‐Care and Outside‐the‐Hospital Energy Profiles for Hemodialysis Services

Abstract

SummaryStudies investigated the patient‐care (in‐hospital) and outside‐the‐hospital energy consumptions for delivering the hemodialysis (HD) service. A life cycle inventory methodology was used for this patient‐based analysis for two hospitals located in Wichita, Kansas. It was found that, for both hospitals, the actual HD machines consumed approximately 3.5 kilowatt‐hours (kWh) of electrical energy per HD, only 8% to 16% of the total energy used for delivering the HD service (in hospital). This increases to 9.6 to 28.9 kWh of hospital billable energy for the whole system of HD machine, auxiliaries, and dialysis water treatment. Converting these hospital direct electrical energy values to natural resource energy (nre) then adding the cradle‐to‐gate natural resource energy for the manufacturing and supply chain of all the HD consumables, the total is 78 to 149 kWh nre/HD. The nre measures all the direct fuel burned to generate energy and is thus directly related to emissions to the air, water, and land and is a direct secondary impact on public health from HD. The ratio of outside‐the‐hospital energy to direct hospital HD electrical energy consumption is 4:1 to 7:1, so a broader base exists for improvement than just the hospital.

Country
United States
Related Organizations
Keywords

690, Industrial ecology, 330, Health care footprint, Energy consumption, Medical-based energy, Hemodialysis, Life cycle inventory (LCI)

Powered by OpenAIRE graph
Found an issue? Give us feedback