
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate

doi: 10.1111/nph.19676
pmid: 38482544
SummaryDeserts represent key carbon reservoirs, yet as these systems are threatened this has implications for biodiversity and climate change. This review focuses on how these changes affect desert ecosystems, particularly plant root systems and their impact on carbon and mineral nutrient stocks. Desert plants have diverse root architectures shaped by water acquisition strategies, affecting plant biomass and overall carbon and nutrient stocks. Climate change can disrupt desert plant communities, with droughts impacting both shallow and deep‐rooted plants as groundwater levels fluctuate. Vegetation management practices, like grazing, significantly influence plant communities, soil composition, root microorganisms, biomass, and nutrient stocks. Shallow‐rooted plants are particularly susceptible to climate change and human interference. To safeguard desert ecosystems, understanding root architecture and deep soil layers is crucial. Implementing strategic management practices such as reducing grazing pressure, maintaining moderate harvesting levels, and adopting moderate fertilization can help preserve plant–soil systems. Employing socio‐ecological approaches for community restoration enhances carbon and nutrient retention, limits desert expansion, and reduces CO2 emissions. This review underscores the importance of investigating belowground plant processes and their role in shaping desert landscapes, emphasizing the urgent need for a comprehensive understanding of desert ecosystems.
- University of Hong Kong China (People's Republic of)
- University of Hong Kong China (People's Republic of)
- Autonomous University of Barcelona Spain
- Xinjiang Institute of Ecology and Geography China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
Carbon cycling, Biodiversity, Plants, Nutrient cycling, Plant Roots, Carbon, Soil, Desert vegetation, Climate change, Humans, Arid ecosystems, Desert Climate, Desertification, Ecosystem
Carbon cycling, Biodiversity, Plants, Nutrient cycling, Plant Roots, Carbon, Soil, Desert vegetation, Climate change, Humans, Arid ecosystems, Desert Climate, Desertification, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
